Sự thật toán học (2)

0
138
Ba người bạn Giáp Văn Dương, Ngô Bảo Châu, Hoàng Hồng Minh (từ trái qua phải)

Châu: Mình đồng ý là đem cọ sát các cách suy nghĩ khác nhau từ Triết, Toán đến Vật lý có thể đưa ta đi xa. Nhưng theo kinh nghiệm, ánh sáng không lóe ra từ cái cách áp đặt máy móc mô hình suy nghĩ của bên này qua bên kia. Ánh sáng luôn lóe ra từ những sự tương đồng tinh tế, mà mình phải thực sự tìm thì mới thấy. Những điểm tinh tế đó thường là nằm ở dưới lớp vỏ của ngôn ngữ.

Sự hình thành của khái niệm nhóm trong toán rất đáng để suy nghĩ từ quan điểm Triết học. Mình có viết nhiều mẩu trên blog về chuyện này nhưng ít ai để ý.

Định nghĩa của nhóm đơn giản đến mức có thể làm những người tò mò thất vọng. Nó mô phỏng các biến đổi nội tại của một đối tượng. Hai biến đổi có thể “hợp thành với nhau”, nhưng biến đổi A xảy ra trước biến đổi B kết hợp lại sẽ khác với khi biến đổi B xảy ra trước biến đổi A. Ngoài ra thì mọi biến đổi đểu nghịch đảo được, tức là có một biến đổi theo chiều ngược lại. Các tiên đề về nhóm đại khái chỉ có vậy.

Ví dụ cơ bản là các thao tác trên khối rubik. Có thao tác A là quay mặt bên trái một góc 90 độ, có một thao tác B là quay mặt trên một góc 90 độ. Có hai thao tác hợp thành A rồi B và B rồi A. Ngoài ra thì có thao tác nghịch đảo của A, nghĩa là quay mặt bên trái một góc 90 độ theo chiều ngược lại so với A.

Nhóm các thao tác trên rubik là một nhóm hữu hạn nhưng có rất nhiều phần tử và khá phức tạp. Vì thế mà khi ta xem hướng dẫn cách quay rubik, nói chung mình chỉ biết chấp hành thôi, còn không hiểu tại sao phải làm như thế. Muốn hiểu phải nghiên cứu tường tận cấu trúc của nhóm này.

Bên cạnh các nhóm hữu hạn, rộng hơn là các nhóm rời rạc, ta còn có các nhóm liên tục.

Điển hình là nhóm các phép dời  trong không gian. Hình học cổ điển có thể biên soạn lại dưới ngôn ngữ của nhóm các phép dời hình trong mặt phẳng hoặc trong không gian. Đó chính là quan điểm của hình học hiện đại. Lý thuyết phương trình đại số một ẩn số được Galois giải thích một cách thấu đáo bằng lý thuyết nhóm Galois. Một trong những cố gắng chính của lý thuyết số hiện đại là mở rộng lý thuyết Galois ra hệ phương trình đại số nhiều ẩn số. Langlands tiên đoán một sự liên quan mật thiết đến các dạng automorphic mà khởi thủy là một nhóm con rời rạc trong một nhóm liên tục. Trong vật lý lý thuyết, Gell-Mann tiên đoán sự tồn tại của một hạt cơ bản dựa vào danh sách các biểu diễn của nhóm Lie.

Khái niệm nhóm có vẻ như một cấu trúc đại số đơn giản thuận tiện, rất khó lý giải ảnh hưởng sâu rộng của nó đến hiểu biết chung của con người.

Minh: Nhân Châu nói đến vụ cái rubik thấy hấp dẫn quá, nên bàn thêm mấy câu thế này:

Tư duy là quá trình Lập Luận, Lập và Luận. Lập Luận xoay vòng nối tiếp nhau. Lập là lựa chọn, là quyết định, là hướng định. Lập khởi thủy là hệ thống các tiên đề, các ký hiệu, các qui tắc kết nối, các quy tắc thao tác, cùng một hệ thống ngữ nghĩa, làm nên một lý thuyết. Luận là quá trình thao tác kết nối, chuyển tải, sinh thành các Lập mới sao cho hợp thức (“không vi hiến”). Toàn bộ dòng này chảy dẫn từ Tiên đề đến Kết luận (Kết luận là một Lập đạt được cuối cùng của một chu trình).

Dòng chảy này đa trị, nên có phép chứng minh hay thì có thể rất ngắn, hoặc phép chứng minh kém hay thì có thể siêu dài. Ví dụ về tập hợp các thao tác trên khối rubik của Châu rất hay cho trường hợp này: có người xoay rất nhanh ăn, người khác lâu ăn, riêng mình có thể xoay rubik cả đời không đi đến đâu cả, nhưng không hề phạm một lỗi logic nào!

Trong một lĩnh vực tri thức cụ thể, xuất phát từ Hệ tiên đề mà đạt đến Kết luận mang  tính  bất định (ví dụ lý thuyết «tính bắc cầu của lòng yêu mến » đưa đến các kết quả « lúc có, lúc nhất định không»), thậm chí mâu thuẫn, sẽ buộc ta phải xem xét lại, bổ sung hoặc thay đổi lý thuyết trong lĩnh vực tri thức đó. Logic chỉ đóng vai trò tư pháp, đảm nhiệm tính hợp pháp của quá trình Luận và của các Lập được sinh thành (ví dụ một công thức mới thu được như kết quả chứng minh hợp pháp thu được từ quá trình Luận).

Còn tính chân lý nằm ở trong nội dung các Lập, được cắt nghĩa bởi bảng các giá trị chân lý có được do các kinh nghiệm, thực nghiệm, kiến thức khoa học đã xác tín (tương đối) và/hay các lựa chọn lý tưởng nhân văn xác quyết. Tính chân lý trong trường hợp khối rubik trên kia có thể được định nghĩa trong bảng giá trị như sau: « ở mọi trạng thái ban đầu, ta luôn luôn sẽ có cách đưa khối rubik về trạng thái mà mỗi mặt chỉ có một màu, bằng cách chỉ áp dụng các thao tác cho phép », như Châu đã nói ở trên.

Dương: Như vậy là ở đây có một số vấn đề cần làm rõ hơn:

1. Một lý thuyết mô tả những biến đổi nội tại trở nên rất mạnh khi mô tả thực tại (reality), nên thực tại phải có cấu trúc nội tại và sự biến đổi của thực tại là do những biến đổi nội tại gây ra?

2. Không thể có một kết cục tất yếu cho sự vận động của một thực tại, vì kết cục phụ thuộc vào cách thức và thứ tự của từng biến đổi riêng rẽ. Phán đoán ở mức tốt nhất chỉ là phán đoán thống kê, không thể là phán đoán tất định?

3. Cơ sở cho những tiên đoán như của Gell-Mann là gì? Có phải đó chỉ là sự tự hoàn thiện, đối xứng, tao nhã…, những tiêu chí của cái Đẹp. Như vậy cái Đẹp (Beauty) và cái Thật (Truth) có quan hệ gì? Một lý thuyết đẹp và mô tả xác thực thường được coi là tốt. Vậy Đẹp, Thật, Tốt (Chân-Thiện-Mỹ) có quan hệ gì với nhau? Hay ba cái này là một.Và như thế, có tồn tại một bộ quy luật chung cho Mỹ học và Đạo đức như cho Khoa học? Thực ra, đây là một câu hỏi rất cũ, nhưng đến giờ vẫn chưa có câu trả lời thỏa đáng.

Châu: Mình có một lý thuyết như thế này, có thể là hơi hàm hồ.

Có rất nhiều yếu tố khác nhau để tạo nên cái đẹp. Một yếu tố là tính vừa đủ: không thiếu, đặc biệt là không thừa.

Phải chăng thiên nhiên tuân theo nguyên tắc tiết kiệm, không chỉ tiết kiệm năng lượng, mà còn tiết kiệm cả thông tin nữa. Vì thế ngôn ngữ để mô tả nó cũng phải thỏa mãn tính tiết kiệm thông tin.

Cái đẹp có một lợi thế khác nữa trong quá trình phát triển của tri thức, cái đẹp dễ được tiếp thu hơn. Cái gì xấu xí, nhưng có giá trị, thường sẽ được con người gọt rũa cho đến khi nó trở thành đẹp. Cái gì giữ mãi cái vỏ xấu xí của mình sẽ có nhiều cơ hội để rơi vào lãng quên.

Dương: Lý thuyết của anh không “hàm hồ” chút nào, mà ngược lại, “cực kỳ tao nh㔠(cười).

Chẳng phải Einstein từng nói: một lý thuyết cần “simple, but not simpler” thì cũng hàm ý không thiếu không thừa.

Nhân vật Hòa Thân trong phim Tể tướng Lưu gù một thời làm mưa làm gió trên phim truyền hình (Việt Nam, còn ở Trung Quốc thì không rõ) miêu tả một cô gái đẹp cho vua Càn Long như sau: cô ấy đẹp đến nỗi nếu bớt một chút thì thiếu, mà thêm một chút thì thừa. Càn Long (tay chơi có số) nghe đến đó thì cười tít mắt. Theo lý thuyết này, giám khảo của các cuộc thi sắc đẹp bây giờ, nếu thấy thí sinh có sẹo ở chân chẳng hạn, có lẽ nên nói cái sẹo ở đó là thừa thay vì thay vì chê bai thí sinh.

Như vậy xem ra nhận định của Đông Tây kim cổ đều có nét tương đồng.

Giờ nghiêm túc hơn một chút nhé:

Trong vật lý cổ điển, khi năng lượng có vai trò chủ đạo thì Nguyên tắc hoạt động tối thiểu (Principle of least action) có vai trò quan trọng tương ứng. Vậy nếu coi tự nhiên (universe), ở mức cơ bản nhất, được tạo bởi thông tin (hiện có rất nhiều nhà vật lý theo giả thiết này) thì Nguyên tắc tiết kiệm thông tin (Principle of least information – PLI) cũng sẽ có vai trò tương tự. Liệu có thể tìm cách kiểm chứng PLI ở những chỗ này chăng (với sự dè dặt rất lớn)?

Trường hấp hẫn: theo cách giải thích thường thấy thì vật chất làm cong không gian, độ cong đó chính là hấp dẫn. Vậy có thể nhìn cách khác: không gian là lưới thông tin; độ cong của không gian chính là mật độ thông tin. Như vậy, ở mức cơ bản nhất, không gian, và rộng ra là cả vũ trụ, được cấu tạo bởi thông tin. Chỗ nào có mật độ thông tin lớn thì vật chất tụ lại tương ứng.

Ánh sáng cũng như mọi vật chuyển động theo đường trắc địa không phải vì hấp dẫn mà đơn giản là dòng chảy tự nhiên của thông tin theo cách tương thích nhất với thông tin nền mà nó tiếp xúc (không gian). Sự lượng tử hóa không gian sẽ là một hệ quả tất yếu. Nhưng thời gian thì sao? Hoặc trong Vật lý lỗ đen, khi các bit thông tin phủ kín chân trời lỗ đen chứ không phải là toàn bộ thể tích lỗ đen thì đây có thể coi là hệ quả của nguyên tắc “không thiếu không thừa”? Vậy liệu có thể dùng PLI để đạt lại những kết quả như của họ? Tiếc là không có một nhà Vật lý lý thuyết ở đây để thảo luận vấn đề này.

Minh: Anh chen một tý vào chuyện cái đẹp thế này.

Cái đẹp có một khía cạnh đặc biệt, là nó liên quan đến cảm xúc của con người.

«Tri thức khách quan » không thể thống trị ở đây hoàn toàn được.

Cái đẹp của mối tình mới chớm đến, khác với cái đẹp của mối tình dứt áo ra đi.

Cái đẹp của quảng trường Times Square ở New York, cả quảng trường là một sân khấu vĩ đại tuyệt vời mà mỗi người có mặt tự mình thành một nhân vật sống, khác với cái đẹp của một bãi biển đìu hiu nắng chiều đỏ ối ở Dauvine, Châu hát, Minh gảy đàn. Mà cũng lại khác nữa với một vẻ chiều cuối Xuân đường Nguyễn Du, Dương với Minh gặp nhau lần đầu trong đời thực bên tách café để rồi bắt đầu câu chuyện dài ở đây…

Ở đây không đơn thuần là « tiết kiệm năng lượng » nữa, mà là các thẩm mỹ biểu đạt các dòng chảy của năng lượng.

Châu: Có rất nhiều điều thú vị trong câu chuyện này. Nhưng có lẽ, mình đã đi quá xa so với chủ đề ban đầu.

Dương : Em cũng thấy vậy, nên sẽ tổng kết lại ở đây. Những phần mở rộng sẽ được thảo luận tiếp trong một dịp khác.

Thay lời kết

Sự thật Toán học, với những đặc tính như khách quan, bền vững, duy lý… có thể được coi là một trong những đặc sản của nền văn minh phương Tây. Sự phát triển của khoa học kĩ nghệ hiện đại trước hết khởi đầu bởi sự tìm ra những sự thật toán học này.

Chính là chúng – dù bản chất tồn tại vẫn còn là một vấn đề bỏ ngỏ – đã tạo ra cơ sở vững chắc cho kho tri thức của nhân loại. Không có chúng, khoa học và kĩ nghệ không thể ra đời, nền văn minh kĩ nghệ hiện đại không thể phát triển.

Cuộc thảo luận về sự thật toán học ở đây tuy chưa dài, nhưng đã gợi mở rất nhiều vấn đề của Triết học, Toán học và Vật lý… Hy vọng rằng, chúng sẽ được làm sáng tỏ phần nào trong những thảo luận tiếp theo.

 

Giáp Văn Dương (bee)